Search results for "pore size distribution"

showing 9 items of 9 documents

Characterization of porous alumina membranes for efficient, real-time, flow through biosensing

2015

Abstract Nanofluidic sensing devices promise high performance by overcoming issues of mass transport of analyte molecules to the sensing surface, whilst micro-porous membranes promise high sensitivity due to a large surface for their capture. Anodic alumina (AAO) filter membranes allow the flow through of samples, and could be used as a convenient and readily available fluidic platform for the targeted delivering of analytes to bioreceptors immobilized on the pore walls. The relatively small pore dimensions, compared to fluidic diffusion lengths, promise highly efficient capture of analytes from the whole sample volume, enabling relatively fast sensing response times and the use of small sa…

AnalyteMaterials sciencegenetic structuresQuantum dotsDiffusionFiltration and SeparationNanotechnologyPorous aluminaPore size distributionBiochemistryCharacterization (materials science)AnodeMembraneGeneral Materials ScienceFluidicsPhysical and Theoretical ChemistryPorosityBiosensorOptical biosensing and sensorsProtein physisorption
researchProduct

Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths

2022

AbstractDespite the increasing understanding of bentonite behaviour, there is still missing evidence on how different hydro-mechanical loadings, including sequences of hydration and compression, affect the fabric and the volume change behaviour of the material. It is generally assumed that the interplay between the behaviour of clay assemblages and the overall fabric of the material is the reason of having final states that are dependent on the stress path followed. Here the results of an experimental campaign aiming to study these factors are reported and discussed. Free swelling and swelling pressure tests were performed, both followed by compression to a relatively high stress. The exper…

Hydro-mechanical responseSettore ICAR/07 - GeotecnicaBentoniteClay fabric evolutionEarth and Planetary Sciences (miscellaneous)Swelling pressurePore size distributionStress-path dependencyGeotechnical Engineering and Engineering GeologyActa Geotechnica
researchProduct

Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior

2018

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it incre…

LangmuirEnvironmental EngineeringP06 - Sources d'énergie renouvelableHealth Toxicology and Mutagenesishttp://aims.fao.org/aos/agrovoc/c_290360208 environmental biotechnology02 engineering and technology010501 environmental sciences01 natural sciencesRedoxchemistry.chemical_compoundAdsorptionBiocharPhysico-chemicalBiomasseZeta potentialEnvironmental ChemistrySurface chargeBiomassOxydation0105 earth and related environmental scienceshttp://aims.fao.org/aos/agrovoc/c_26874Designer biocharMetalPublic Health Environmental and Occupational HealthArsenateGeneral MedicineGeneral ChemistryOxyanionPore size distributionMétalPollutionMetal-blendingU50 - Sciences physiques et chimie020801 environmental engineeringhttp://aims.fao.org/aos/agrovoc/c_926chemistryChemical engineeringMetalsCharcoalCharbonPyrolyseAdsorptionhttp://aims.fao.org/aos/agrovoc/c_5472Pyrolysishttp://aims.fao.org/aos/agrovoc/c_1693
researchProduct

Laboratory tests addressed to realize customized restoration procedures of underwater archaeological ceramic finds

2013

The present contribution is part of a biennial research project funded by the Italian Ministry of Education, Universities and Research (MIUR). This study, currently in progress, deals with innovative experimental approaches applied to the chemical, mineralogical and physical transformations occurring during the prolonged permanence of archaeological ceramic finds in seawater environments as well as to restoration and conservation issues of the same underwater artifacts. The experimental approach used in this research consisted in the manufacture of ceramic test-pieces (briquettes) and their successive placing in underwater environment. This work aims at assessing how textural and compositio…

Pore sizeAbsorption of waterCapillary water absorptionkinetics of capillary water absorptionGeneral ChemistryArchaeologyexperimental firingpore size distributionarchaeological ceramicvisual_artvisual_art.visual_art_mediumEnvironmental scienceGeneral Materials ScienceSeawaterCeramicUnderwaterseawater burialMercury intrusion porosimetryPorositySettore GEO/09 -Georis. Miner.e Appl.Mineral.-Petrogr. per l'Ambi.ed i B.Cult.total porosityApplied Physics A
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2017

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

Pore sizeScaffoldMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringNanotechnology02 engineering and technologyscaffold010402 general chemistry01 natural sciencesPLLAAnalytical ChemistryTissue engineeringpore size distributionChemical Engineering (all)PorositySettore ING-IND/24 - Principi Di Ingegneria Chimicaintegumentary systemLow-field NMR; phase separation; PLLA; pore size distribution; scaffold; Analytical Chemistry; Chemical Engineering (all); Polymers and Plastics021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiWound dressingDrug deliveryphase separation0210 nano-technologyLow-field NMR
researchProduct

A facile method to determine pore size distribution in porous scaffold by using image processing

2015

Abstract Image processing permits scientists to investigate morphological properties of three-dimensional structures starting from their bi-dimensional gray-scale representation. In many cases porous structure with complex architecture has to be designed in order to attempt specific properties such in the case of scaffold for tissue engineering. Traditional morphological characterization, like scanning electron microscopy, should be coupled with quantitative information such as pore size distribution (PSD) in order to get a deeper understanding of the influence of the porous structure on tissue regeneration processes and on other related applications, it is remarkable to study a quantitativ…

ScaffoldMaterials scienceScanning electron microscopeGeneral Physics and AstronomyNanotechnologyImage processingCell BiologyPorosimetryPore size distributionCharacterization (materials science)ScaffoldImage processingTissue engineeringStructural BiologyGeneral Materials ScienceRepresentation (mathematics)PorosityMicron
researchProduct

Nuclear Magnetic Resonance for Cultural Heritage

2007

Abstract Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T 1 and T 2 relaxation data of fully water-saturated samples to get “pore size” distributions, but the use of T 2 requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time τ is used in Carr–Purcell–Meiboom–Gill experiments. When a portable single-sided N…

Single-sided NMR deviceGeologic SedimentsPORE SIZE DISTRIBUTIONSMagnetic Resonance SpectroscopyTime FactorsField (physics)Scale (ratio)Surface PropertiesSample (material)DiffusionDephasingBiomedical EngineeringBiophysicsInhomogeneous magnetic fieldsDiffusionNuclear magnetic resonanceRadiology Nuclear Medicine and imagingNMR SINGLE-SIDEDChemistryConstruction MaterialsRelaxation (NMR)WaterPOROUS MEDIANMRArchaeologyNMR relaxationNuclear magnetic resonance in porous mediaPorous mediaNMR relaxationSingle-sided NMR deviceInhomogeneous magnetic fieldsCultural heritageCULTURAL HERITAGEPorous mediumPorosity
researchProduct

The use of soil water retention curve models in analyzing slope stability in differently structured soils

2017

Abstract This study analyzes whether and at what rate the parameterization of the Soil Water Retention Curve (SWRC) affects the analysis of shallow slope stability for differently structured unsaturated soils. Advanced empirical or physically-based equations of SWRCs have been proposed in literature to describe soil systems characterized by the so-called bimodal porous domain. In unsaturated soils, SWRC affects the stability assessment in two ways. It influences the resistance properties in terms of shear strengths, which depend on the soil water suction; and it affects the hydrological process modeling (e.g. infiltration) directly influencing soil moisture patterns and indirectly influenci…

Unsaturated soilsSoil texture0208 environmental biotechnologySettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaFactor of safety04 agricultural and veterinary sciences02 engineering and technologyHydrological modelingBimodal pore size distributionBimodal pore size distribution; Factor of safety; Hydrological modeling; Slope failure; Unsaturated soils; Earth-Surface Processes020801 environmental engineeringInfiltration (hydrology)Factor of safetySlope stabilitySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceGeotechnical engineeringUnsaturated soilSlope failureSaturation (chemistry)PorosityWater contentEarth-Surface Processes
researchProduct

Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene a…

2021

International audience; The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant. In this regard, tungestophosphoric acid (PW12) was supported onto cerium-doped NH2-UiO-66 (PW12/Ce-NUiO-66) and employed for the photo-oxidation of dibenzothiophene (DBT) and quinoline (Qu). Herein, using cerium (Ce) as a “mediator” facilitated the separation of charge carriers, while NH2-UiO-66 remarkably enhanced the surface area with plentiful adsorption sites and shifted the adsorption edge of PW12to the visible region. The sum …

pore volumeAdsorption edgesLight02 engineering and technology01 natural scienceschemistry.chemical_compound[SPI]Engineering Sciences [physics]quinolineVisible-light irradiationMaterials Chemistryoxidizing agentOxidative desulfurizationirradiationQuinolineCerium021001 nanoscience & nanotechnologyOxidantsFlue-gas desulfurizationCeriumDibenzothiophenePhotocatalysisCharge carrierCarrier mobility0210 nano-technologychemistry.chemical_element010402 general chemistryMaximum EfficiencyCatalysisArticleuraniumAdsorptionphosphotungstic acidpore size distributiondibenzothiophene derivativegreen chemistryphotooxidationDopingdesulfurizationGeneral Chemistrysurface areaPhotocatalytic systems0104 chemical sciencesVisible light inducedDibenzothiophenesTungstophosphoric acidMolecular oxygenPhotocatalytic activitychemistryadsorptiondesorptionoxygenphotocatalysisNuclear chemistrycatalyst
researchProduct