Search results for "pore size distribution"
showing 9 items of 9 documents
Characterization of porous alumina membranes for efficient, real-time, flow through biosensing
2015
Abstract Nanofluidic sensing devices promise high performance by overcoming issues of mass transport of analyte molecules to the sensing surface, whilst micro-porous membranes promise high sensitivity due to a large surface for their capture. Anodic alumina (AAO) filter membranes allow the flow through of samples, and could be used as a convenient and readily available fluidic platform for the targeted delivering of analytes to bioreceptors immobilized on the pore walls. The relatively small pore dimensions, compared to fluidic diffusion lengths, promise highly efficient capture of analytes from the whole sample volume, enabling relatively fast sensing response times and the use of small sa…
Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths
2022
AbstractDespite the increasing understanding of bentonite behaviour, there is still missing evidence on how different hydro-mechanical loadings, including sequences of hydration and compression, affect the fabric and the volume change behaviour of the material. It is generally assumed that the interplay between the behaviour of clay assemblages and the overall fabric of the material is the reason of having final states that are dependent on the stress path followed. Here the results of an experimental campaign aiming to study these factors are reported and discussed. Free swelling and swelling pressure tests were performed, both followed by compression to a relatively high stress. The exper…
Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior
2018
Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it incre…
Laboratory tests addressed to realize customized restoration procedures of underwater archaeological ceramic finds
2013
The present contribution is part of a biennial research project funded by the Italian Ministry of Education, Universities and Research (MIUR). This study, currently in progress, deals with innovative experimental approaches applied to the chemical, mineralogical and physical transformations occurring during the prolonged permanence of archaeological ceramic finds in seawater environments as well as to restoration and conservation issues of the same underwater artifacts. The experimental approach used in this research consisted in the manufacture of ceramic test-pieces (briquettes) and their successive placing in underwater environment. This work aims at assessing how textural and compositio…
Characterization of PLLA scaffolds for biomedical applications
2017
The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.
A facile method to determine pore size distribution in porous scaffold by using image processing
2015
Abstract Image processing permits scientists to investigate morphological properties of three-dimensional structures starting from their bi-dimensional gray-scale representation. In many cases porous structure with complex architecture has to be designed in order to attempt specific properties such in the case of scaffold for tissue engineering. Traditional morphological characterization, like scanning electron microscopy, should be coupled with quantitative information such as pore size distribution (PSD) in order to get a deeper understanding of the influence of the porous structure on tissue regeneration processes and on other related applications, it is remarkable to study a quantitativ…
Nuclear Magnetic Resonance for Cultural Heritage
2007
Abstract Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T 1 and T 2 relaxation data of fully water-saturated samples to get “pore size” distributions, but the use of T 2 requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time τ is used in Carr–Purcell–Meiboom–Gill experiments. When a portable single-sided N…
The use of soil water retention curve models in analyzing slope stability in differently structured soils
2017
Abstract This study analyzes whether and at what rate the parameterization of the Soil Water Retention Curve (SWRC) affects the analysis of shallow slope stability for differently structured unsaturated soils. Advanced empirical or physically-based equations of SWRCs have been proposed in literature to describe soil systems characterized by the so-called bimodal porous domain. In unsaturated soils, SWRC affects the stability assessment in two ways. It influences the resistance properties in terms of shear strengths, which depend on the soil water suction; and it affects the hydrological process modeling (e.g. infiltration) directly influencing soil moisture patterns and indirectly influenci…
Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene a…
2021
International audience; The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant. In this regard, tungestophosphoric acid (PW12) was supported onto cerium-doped NH2-UiO-66 (PW12/Ce-NUiO-66) and employed for the photo-oxidation of dibenzothiophene (DBT) and quinoline (Qu). Herein, using cerium (Ce) as a “mediator” facilitated the separation of charge carriers, while NH2-UiO-66 remarkably enhanced the surface area with plentiful adsorption sites and shifted the adsorption edge of PW12to the visible region. The sum …